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PD Dr. Martin Schultz (Forschungszentrum Jülich)





Abstract

Exposure to high ozone concentrations can be harmful for humans and therefore
many countries have declared a threshold for ozone concentrations that should not
be exceeded. That is why the ability to predict high and extreme near surface ozone
concentrations is important not only for human health but also for regulatory pur-
poses. The problem with many existing ozone forecasting methods, especially deep
learning approaches, is their inaccuracy and unreliability to forecast high ozone con-
centrations. The goal of this study is to discover the usage of oversampling and sub-
sequent finetuning to increase the forecast precision for extreme near surface ozone
concentration. Therefor the architecture and experiment setup of IntelliO3-ts, a
convolutional neural network for the forecast of near surface ozone concentrations,
is used as a foundation to which the methods are applied. At first, oversampling
is applied to the data set, which is the process of multiplying samples from less
frequent ozone concentration ranges and adding them to the data set. The thereby
obtained new “oversampled“ data set that has a flatter sample distribution is then
used to train the neural network. In a second and additional step the finetuning
takes place, which is a retraining of the network obtained in the first step, using
the original data set before oversampling was applied. For both methods different
parameters will be tested and evaluated on the basis of different scores calculated
on 2×2 contingency tables. The contingency tables are created by using a threshold
and separating the test data in two groups, ozone concentrations below and above
the threshold.
The oversampling increases the ability to successfully forecast if a sample exceeds
a certain threshold, thereby increasing the forecast precision for high ozone values.
These advantages come at the cost of also increasing the percentage of samples that
are falsely predicted to be above a certain threshold, also resulting in a systematic
overestimation. The best model obtained, was able to increase the hit rate at 60 ppb
from 43% to 67% and at 80 ppb from 1.9% to 15.2%. This means that the model
is able to correctly predict that a sample is above 60 ppb and 80 ppb for 67% and
15.2% of all samples above that threshold instead of only achieving this for 43% and
1.9% of the samples above that threshold, respectively. Therefore the oversampling
offers a valuable trade off, to sacrifice parts of the overall performance in order to
increase the ability to forecast high ozone values, which might be useful especially
for regulatory purposes. The finetuning did not add any new value to that, but only
reverted some of the improvements that were achieved by the oversampling.
For future research it might be interesting to investigate the usage of different over-
sampling methods or explore the application of oversampling and finetuning to the
forecasting of multiple days, as this study only focused on the forecast for the next
day.
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1 Introduction

1.1 Ozone and its emergence

Ozone is a highly reactive gas which is present in the stratosphere and the troposphere
[50]. The ozone in the stratosphere forms the ozone layer which protects life on earth from
high doses of harmful UV radiation, but the ozone in the troposphere can be harmful for
humans, animals and crops [53][39]. Especially high concentrations of tropospheric ozone
can cause respiratory problems, decrease physical capabilities and worsen many other
diseases. The German “Umweltbundesamt“ defines the critical threshold for the 8-hour
average ozone concentration as 120µ/m3. This critical threshold should only be exceeded
on 25 days in a year [49]. This fixed threshold is not unique to Germany and shows
the relevance of the ability to forecast high or “extreme“ ozone concentrations. It is not
only directly important for human health but it also gives regulators and government
authorities the ability to evaluate goals beforehand and to react and adapt in advance.
Unlike other air pollutants ozone is not directly emitted into the atmosphere but arises
from various reactions of primary air pollutants. Hence, ozone is classified as a secondary
air pollutant. The main primary air pollutants that are responsible for the emergence of
ozone are hydrocarbons (CHx), volatile organic compounds (VOCs) and nitrogen oxides
(NOx). The NOx are broken apart by UV radiation in the sunlight and the free radical
oxigen (O1) bonds to dioxygen (O2) to form ozone (O3) [46]. In this process, temperature is
an important factor but in general also other weather conditions have a major influence on
ozone formation and destruction. Since the different air pollutants and weather conditions
also influence each others, the dependencies for the emergence of ozone are highly non
linear. The non-linearity of these dependencies and the time delay with which they take
place makes the forecast of ozone a complex task. Fortunately across Germany as well as
many other countries there is a dense web of air quality measuring stations which provides
huge amounts of data for various air pollutants [48] and the COSMO-REA6 provides
reanalysis for meterological data [35], both are accessible via the TOAR database [43].

1.2 Climatological Forecasts

Ozone forecasts, just like other forecasting tasks, can be divided into two groups, statistical
methods and numerical models. Numerical models for weather and air quality forecasts
emerged in the beginning of the last century. These methods use various numerical
schemes to solve chemical transport models [11]. Today numerical models are still used
among a broad range of air quality and weather forecasting tasks [27]. Statistical methods
have a long history and include simple persistence forecasts or more complex regression
models [40] [2]. With the success of machine and especially deep learning across various
research fields, a new and vastly growing field of statistical methods emerged. This
new development was also picked up by a growing number of researchers that study
enviromental forecasting. Comrie et al. were one of the first researchers to investigate
this possible application [12]. They used the first existing neural network architecture
called fully connected networks and many others followed their example [10][51]. Since
then, many of the more complex methods and architecture that emerged from other deep
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learning applications have been applied to enviromental forecasting [31]. Tai-Long et al.
[21] among many others [4][33] explored the usage of recurrent neural networks (RNNs),
an architecture which was specifically designed for sequential data. Convolutional neural
networks (CNNs), which were conceptualized for the extraction of different features and
initially used in computer vision, where used for ozone forecasts by Sayeed et al. [41] or
Eslami et al. [17]. A more detailed description of the different neural network architectures
is provided in section 2.

1.3 Extreme (Ozone) Values and their Forecasting

Extreme concentrations of near surface ozone are generally often defined as concentra-
tions that exceed a certain threshold or more general as a strong deviation from average
concentrations. In Germany the threshold for the 8-hour average ozone concentration is
at 120µ/m3 and in most regions and years this threshold is only exceeded 1-10 times per
year [49][47]. So although there are plenty of air quality measuring stations, many of
them with records lasting 10 years or more, there are still very few samples for extreme
ozone concentrations. This leads to the question whether these few samples are sufficient
for deep learning methods to learn from them in order to predict future extreme ozone
concentrations. While there have been efforts to specifically target the forecasting of ex-
treme ozone values with chemical transport models [42], the approaches using pure deep
learning to forecast extreme ozone values are very rare.
In general the deep learning research on extreme value forecasting is very shallow but
plenty of research has been done on a similar task, the forecasting of extreme events.
Those extreme events can be extreme traffic loads like in the study by Laptev et al. at
Uber [36] but can also be related to climatology like extreme weather events in the study
by Liu et al. [32]. These forecasting tasks are often referred to as imbalanced data prob-
lems since the frequency of the different classes, extreme and non extreme events, is very
different. Buda et al. did a systematic study on imbalanced data problems and methods
to tackle these [8] which was afterwards picked up and confirmed by Johnson et al. [22].
They found out that a form of data augmentation, especially oversampling which is the
process of copying samples of less frequent classes, can improve forecast precision for less
frequent classes. Additionally finetuning, a form of retraining of the network with the
original data set, brought further improvements in their study. This raises the question
whether their results and the methods that brought the best results for them are also
transferable to forecasting of extreme values, specifically extreme ozone concentrations.
The theoretic concept of both methods, oversampling and finetuning, will be explained
in section 3 and their concrete application will be described in section 4.

1.4 Foundation and Aim of the Study

The main foundation for this study is the IntelliO3-ts paper by Kleinert et al. [26].
IntelliO3-ts is a convolutional neural network consisting of two inception blocks and
trained on data from 334 monitoring stations in Germany. This study uses the same
network architecture and data and aims on improving the networks ability to precisely
forecast extreme values. The implementation is made with MLAir, a programming frame-
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work for machine learning on air data time series which was developed by Leufen et al.
[30], and the data is accessed via the TOAR (Tropospheric Ozone Assessment Report)
database [43].
The aim of this study is to increase the performance of the network on high or “extreme“
ozone values. Therefore, oversampling and oversampling with subsequent finetuning will
be applied in order to investigate whether they show the same improvements for forecast-
ing of extreme values as they did for forecasting of extreme events. In order to evaluate
the effect of these methods, evaluation metrics based on 2 × 2 contingency tables with
gliding thresholds are introduced.
This study is structured as followed: Section 2 will give an introduction to neural net-
works, their fundamental features and the different network architectures. In section 3 the
characteristics of extreme ozone values will be presented and an overview on deep learning
methods for extreme values and extreme events forecasting will be given. Afterwards the
two methods used in this study, oversampling and finetuning, and their theoretic concepts
and reasoning will be introduced. Section 4 gives an overview on the data and methods
used in this study, the concrete application of oversampling and finetuning and the eval-
uation metrics used in this study. After that, the results of the study will be presented
in section 5 and discussed in section 6. Finally in section 7, a conclusion is drawn and an
outlook on potential further research questions is given.

2 Artificial Neural Networks

Artificial neural networks (ANNs) are a computer scientific and statistical tool which is
able to capture highly non-linear and unknown relations in data. This ability is used for
various tasks like image recognition, natural language processing or multivariate regres-
sion as done in this study. ANNs are build to mimic the structure of the human brain
by processing information through different layers of “neurons“ and afterwards “learning“
from the errors made. The idea of a “logical calculus“ to imitate “nervous activity“ was
conceptualized by McCulloh et al. in 1943 [34] and Rosenblatt et al. later proposed the
first feed forward neural network as multilayer perceptron (MLP) [18].
After the MLPs, also called feed forward or fully connected networks, many other network
architectures emerged. Two of the first new architectures were recurrent neural networks
(RNNs), which were first proposed by Rumelhart et al. in 1986 [13], and convolutional
neural networks (CNNs), proposed by LeCun et al. in 1998 [28]. While RNNs are spe-
cialised on sequential data by recurrently processing inputs and producing outputs, the
CNNs focus on feature extraction with different convolutional filters, a data compression
method that originated in image processing. Over time many more complex architec-
tures, which are often more specialised in terms of applications or specific structures of
in- and outputs, were developed. Important examples are general adversarial networks
(GANs) proposed by Goodfellow et al. [19] or variatonal auto-encoders (VAEs) proposed
by Kingma et al. [25] along many others. Furthermore, more detailed methods and struc-
tures were developed to enhance existing architectures. An important example for this
study are inception blocks, proposed by Szedegy et al.[45], which are a specific building
block for CNNs that combine multiple convolutions that are done in parallel.
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This chapter contains an overview on feed forward networks and the calculations and
formulas needed for their learning and forecasting, which is mainly based on [5] and [3].
Afterwards introductions to convolutional neural networks and inception blocks, which
represent the main architecture used in this study, are given.

2.1 Feed forward networks

Feed forward networks, first introduced as multilayer perceptron, consist of computational
neurons stacked together as layers of neurons. These layers can be divided in three
different categories, input-, hidden- and outputlayers. The general task of any neural
network is to learn a target function t that maps the input x to an output ŷ. The
target function can be described by the following process: The initial input is fed into the
inputlayer, gets passed through the hiddenlayers until it reaches the outputlayer which
transforms the information into the desired output shape. This process of calculating the
output ŷ from an input x is called forward propagation and is the reason for the name “feed
forward network“ because the input is “fed forward“, passing each layer consecutively.
The target function itself is learned during a second process called backward propagation.
Backward propagation is done on a training data set where for every input x a desired
output y, also called label, is given. The target function first maps the input x to an
output ŷ and is than adjusted in dependency of the deviation from the prediction ŷ to
the label y.

inputlayer

1

hiddenlayer 1

1

hiddenlayer 2

1

hiddenlayer k

1

outputlayer

. . .

Figure 1: k-hiddenlayer neural network consisting of an inputlayer, k hiddenlayers and
an outputlayer. The empty circles represent neurons that are grouped into the different
layers. The small circles with 1 are used to represent the biases in the consecutive layer.
The arrows between the neurons represent the links.
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In total there are three main components to a neural network as can be seen in figure
1, the different layers, the neurons which make up the layers and the links that connect
neurons of consecutive layers. The name fully connected network comes from the fact,
that in this type of network every neuron of one layer has a link to every neuron in the
consecutive layer.
The numbers that are involved in the calculations in a feed forward network can be divided
into two parts, values which are calculated during the forward propagation and parameters
which build the target function and are changed in the backward propagation. Each link
has a parameter w which is called weight and each neuron has a parameter b, the bias.
For computational reasons the bias is represented as a link to a node in the previous layer
with the value 1. Each neuron contains two different values, the net input z and the nodes
output a. The input value z is derived as the weighted sum of the output values a from
the nodes of the previous layer, multiplied with the weights of the corresponding links
plus the bias of the neuron. The value a is the output of the activation function g given
z as input. For the neurons in the l-th layer the following applies:

z[l] = W [l] ∗ a[l−1] + b[l]

a[l] = g[l](z[l])
(1)

where z[l] and a[l] are in Rn[l]
, W [l] ∈ Rn[l]×n[l−1]

is the weight matrix of the l-th layer,
b[l] ∈ Rn[l]

is the bias vector of the l-th layer, g[l] is the activation function of the l-th
layer and n[l] is the number of neurons in the l-th layer. To save computational cost the
calculations of z[l] is actually done as:

z[l] = W̃ [l] ∗ ã[l−1] (2)

where W̃ [l] consists of the weight matrix W [l] and additionally as last (or first) column,
the bias vector b[l] is added. Analogously vector ã[l−1] consists of the neuron values of
the previous layer a[l−1] and an additional 1 as last (or first) entry to represent the bias
neuron. This computational concept is also displayed in figure 1 where the bias for every
neuron is replaced by a link to a neuron with the value 1. The bias of the neuron then is
identical to the weight of this link.
The most common case for activation functions is that for all layers except the output
layer a fast computable, non-linear function is used, like rectified linear units (RELU),
exponential linear unit (ELU) or tanh. The non-linearity is essential, because with a linear
activation function for all layers, the target function that the neural network represents
would always stay linear, no matter how the different parameters are changed. For the
output layer the most common choices are softmax or linear activation functions [44].
The calculations are done iteratively for every layer until the outputlayer is reached. The
output layer then outputs ŷ which completes the forward propagation.
Afterwards, if the network is being trained, the backward propagation starts where the
network learns from the errors made by adjusting weights and biases in the different
layers. The first step hereby is computing the loss function L from the prediction ŷ and
the correct label y. The most commonly used loss function is the mean squared error:

L(ŷ, y) =
no∑
i=1

(ŷi − yi)2 (3)
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where no is the size of the output layer. From this loss L, partial derivatives of every
parameter in the network are calculated. Then the concept of gradient descent is applied,
which means the weights and biases are changed in the direction of the negative partial
derivative. The amount of change is determined by the amount of the partial derivative
and the globally set learning rate α. So every parameter p, with p being a weight or a
bias, is updated as:

p = p− α∂L
∂x

(4)

For a more detailed explanation on backpropagation see [55].

2.2 Convolutional Neural Networks

Convolutional neural networks are a specific type of neural network architecture that
got his name from using convolution operations, a data comprehension method that is
mostly used in image processing. It was proposed by LeCun et al. [28] and initially
conceptualized for the recognition of handwritten digits or the broader field of image
recognition and classification. This introduction to CNNs is mainly based on the genesis
paper from LeCun et al. [28] and a comprehensive but deeper insight is given by Albawi
et al. [1]. All matrix indices in formulas will start at zero.
A convolutional neural network has the same main function as every feed forward network,
which is to learn a target function t that maps an input x onto an output ŷ. But instead
of only using layers of fully connected neurons, like a fully connected network does, some
layers instead consist of one or more convolutional filters. The terms convolutional filter
and kernel often have slightly different meanings but in this work, they are treated as
synonyms that denote a single convolution matrix. A single filter is represented by a
matrix with certain shape and values. Most commonly the filter is a quadratic two
dimensional matrix which is applied to a two or three dimensional input matrix. For
example consider a 8 × 8 input matrix M and a 3 × 3 filter F . The filter is applied to
every 3 × 3 submatrix by multiplying the values of M and F at the same position and
adding them up. Hence, for the output matrix O holds:

Oi,j =
2∑

k=0

2∑
l=0

Mi+k,j+l ∗ Fk,l (5)

There are in total 6× 6 potential positions in which the filter can be applied to the input
matrix, that is why O ∈ R6×6. In general for a m×m input matrix M and a f × f sized
filter, the output matrix O is of shape (m+ 1− f)× (m+ 1− f) and defined as:

Oi,j =

f−1∑
k=0

f−1∑
l=0

Mi+k,j+l ∗ Fk,l (6)

There are two more parameters to convolutions which are stride and padding. Stride
describes the step size in which the filter is applied to the input matrix. Padding describes
a process where the input matrix size is increased by adding additional rows on the top
and bottom and columns at the left and right of the matrix. This ensures that the output
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matrix has the same shape as the input matrix before the padding was applied. The
additional rows and columns are most often filled with either zeros or mirror the values in
the original input matrix. In the formulas above, a stride of one and no padding is used.
If in general a stride of s and a padding of p is applied, the input matrix is padded to a
matrix M̃ which has the size (m+ 2p)× (m+ 2p) and the formula for O changes to:

Oi,j =

f−1∑
k=0

f−1∑
l=0

M̃i∗s+k,j∗s+l ∗ Fk,l (7)

with the number of rows and columns in O being o = dm+2p+1−k
s

e. This means a bigger
stride leads to a smaller output matrix and a bigger padding on the other hand leads to
a bigger output matrix. For the output matrix to be the same shape as the input matrix,
the following equation must be valid:

o = dm+ 2p+ 1− k
s

e !
= m

⇔p = bm(s− 1) + k − 1

2
c

(8)

The last method which is also used in CNNs are poolings, mainly average and maximum
pooling. They work in a similar way to convolutions but instead of applying a filter to
every submatrix, the average or maximum value is chosen from each submatrix.

Figure 2: Illustration of LeNet-5 architecture from the paper by LeCun et al. [28] which
was conceptualized to recognize handwritten digits from a 32×32 pixel input image. The
image displays the shapes of the data that is outputted after every layer, the layers that
are between these outputs are described at the bottom of the image. The layer 1 and
3 consist of 6 and 16 convolutional filters with the size 5 × 5 with no stride or padding
which is why both layers reduce the input size by 4 in each dimension. The so called
subsampling layer at positions 2 and 4 are 2 × 2 convolutional filters with a stride of 2
which is why they reduce the input size by a factor of 2. In the end 2 fully connected
layer with 120 and 84 neurons are added as well as a gaussian connection that produces
the output of size 10.

A CNN typically consists of one or multiple convolutional layers, often directly followed
by a pooling layer. At the end of these layers a few fully connected layers complete
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the network. The idea of this architecture is that the convolutional layers extract the
features from the input and afterwards the fully connected layers learn to combine these
features. A convolutional layer consists of multiple convolutional filters. Just like the
weights and biases in the classical feedforward network the weights in these filters are
considered as parameters and are tuned in the backward propagation. Deeper into the
network the number of filters used per layer tends to grow. Additionally the size of the
input matrix gets smaller with every convolutions without padding that is applied. In the
simple example of a two dimensional input matrix this leads to matrizes that are getting
smaller in those two dimensions with every layer but growing in the third dimension with
more and more filters used. Conceptually the first convolutional layers start extracting a
few bigger features and with every extra layer the features extracted start to get smaller
and more specific and their quantity grows. This concept can be observed in figure 2
which displays the architecture of the LeNet-5 network from the paper by LeCun et al.
[28].

2.3 Inception Blocks

Inception blocks are a specific type of CNN architecture first proposed by Szegedy et al.
in 2014 [45]. Up to this point the arising problem with convolutional neural networks
was that in order to improve their performance the most commonly used approach was
to make them bigger, thereby increasing the number of convolutional layers as well as the
number of filters used in each layer. This expands the number of total parameters that
are trainable which can make the network more powerful on the one hand but more prone
to overfitting on the other hand, not to mention the exponentially rising computational
costs. The second problem with this approach are vanishing or exploding gradients which
refers to the partial derivative calculation in the learning process of the network. As more
layers get stacked on top of each other, the risk of the gradients either converging to zero
or infinity grows.

Figure 3: Illustration of the inception module from the paper by Szegedy et al. [45].
The naive version on the left side simply does 1 × 1, 3 × 3 and 5 × 5 convolutions and
a 3 × 3 max pooling in parallel and concatenates these. For the inception module with
dimension reduction on the right, a 1 × 1 convolution is added to every of the parallel
processes that did not have it yet. Before the 3× 3 and 5× 5 convolutions and after the
max pooling.
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To solve theses problems Szegedy et al. designed the inception blocks which consist of
different convolutions with different filter sizes and poolings that are done in parallel and
concatenated at the end. The different filter sizes, pooling types and also number of
convolutions and poolings used can be varied across different applications. Two examples
for combinations of convolutions and poolings in a inception block can be seen in figure
3, which is taken from the paper by Szegedy et al. [45].
The network architecture used in this study consists of two consecutive inception blocks
that are very similar to the inception module with dimension reductions in figure 3.
Further detail will be given in section 4.

3 Task of Predicting Extreme Values

The definition of extreme values can differ between research fields but extreme values
are commonly defined as data points that have an extreme deviation from the average
value and therefore lie on the edge of the distribution. Prediction of extreme values is
similar but not identical to predicting extreme events. Both, extreme values and extreme
events, often have a low frequency but the forecasting of extreme values is a multivariate
regression task while the prediction of extreme events is a classification task. This chapter
will go over what characterizes extreme ozone values and which of these characteristics
makes them hard to predict. Furthermore it will be described why especially deep learning
methods have problems with predicting extreme values and what approaches have been
developed to tackle extreme value and extreme event forecasting. Finally the theoretical
concept and reasoning behind the two methods which will be investigated in this study,
oversampling and finetuning, will be explained.

3.1 Extreme Ozone Values

Near surface ozone concentrations can vary strongly as can be seen in figure 4 which
displays the histogram for the training data used in this study, that was standardized to
mean zero and unit variance. The data distribution shows a deviation from the mean
of up to six standard deviations on the right side and up to two standard deviations
to the left side. This asymmetry is due to the fact, that ozone concentrations are on
the lower end limited by zero which is why their distribution is called a zero-limited
asymmetrical distribution. Because of this asymmetry on the right and left end of the
distribution, it differs from a regular gaussian distribution. This imposes a problem since
many forecasting methods implicitly assume a gaussian distribution or at least achieve the
best performances on gaussian distributions. This and and the fact that extreme ozone
concentrations have such a low frequency makes it difficult to predict them.
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Figure 4: Density histogram of the ozone concentrations in the training data which
consists of 536419 samples. The training data was normalized standardized to mean zero
and unit variance and therefore the values on the x-axis are giving as standard deviation.

3.2 Extreme values in deep learning

The forecast of extreme values, especially if they are extremely rare, is a difficult task
for many methods, but for deep learning this problem is especially significant. The main
concept of deep learning, which is to “learn“ from large amounts of data, already highlights
the two main issues. The first lies in the data that has a large amount of total samples
but the extreme values only make up a small amount of that. The second problem comes
with the “learning“ process of the network. The learning is based on the error of a loss
function and the loss is calculated over all samples, most often with a mean squared or
mean absolute error. This results in the networks prediction being drawn to the average
value and especially being incentivised not to predict extreme values. Approaches to solve
the latter problem often include the development of different loss functions. Examples
for this approach are studies from Di Qi et al. who applied a relative entropy loss [14]
or the extreme value loss proposed by Ding et al. [15]. Both are based on the cross
entropy loss, a loss function that does not consider small deviations between forecast and
observation but rather accounts for if the statistical structure is captured, for example
detecting whether it is an extreme event or not. A key feature of the cross entropy loss
and its variations is the usage of a log function which allows to ignore smaller deviations
and accounts stronger for bigger deviations. The logarithmic function furthermore can
serve the purpose of transforming the distribution function to an approximate gaussian
distribution.
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Tackling the first problem, the low frequency of outliers, is more common in the closely
related field of predicting extreme events. Tasks in this field are also often referred to
imbalanced data problems because of the imbalance in the distribution of the extreme
and non extreme events or classes. The most common methods used can be divided into
two groups, data driven and classifier based methods. Data driven methods include some
form of data augmentation, mostly either increasing the number of samples for lower
frequent classes or decreasing the number of higher frequent classes. This is called over-
or undersampling. Classifier based methods change properties of the classifier itself by for
example changing thresholds that are used to divide classes or change weights that are used
for classification. Buda et al. did a systematic study on imbalanced data classification for
convolutional neural networks [8] and their work was picked up by Johnson et al. in their
survey on deep learning with class imbalance [22] which showed similar results. Buda
et al. investigated both data driven as well as classifier based methods and evaluated
these methods on three datasets with different sizes and levels of class imbalance. In
their study oversampling and oversampling with subsequent finetuning, also denoted as
two-phase approach, showed the best results on all datasets. Both methods will be further
explained in the following. This study investigates whether the results that Buda et al.
showed for the imbalanced data classification are also transferable to the prediction of
extreme ozone concentrations.

3.3 Oversampling

Oversampling in general describes the process of creating more samples of a specific type
which can be a class, a single value or a range of values. Most often it aims on multiplying
the number of samples of a type that is less frequent than other types, thus making the
data distribution more balanced. Oversampling often brings one big problem, which is
overfitting. Overfitting is the process where a neural network, especially for deep neural
networks, tailors itself to strong to the training data and is therefore not able to capture
interrelations within the data but rather just “memorizes“ all training samples. This typ-
ically occurs when the ratio of the parameters in the network to the numbers of samples
in the training set gets to high or the network is training for to long [29]. Oversampling
can cause a special form of overfitting where the networks ability to detect and classify
lower frequent classes is only learned on a few different samples that just occur multiple
times in the training set. The network then learns to correctly classify those exact samples
without learning the underlying structure which is responsible for a sample to be in this
specific, low frequent class. But according to the results from Buda et al. [8] and Johnson
et al. [22], convolutional neural networks are less vulnarable to overfitting as other deep
learning architectures.
Oversampling methods can be divided into two main groups, duplicating or synthesizing.
The latter create new “synthesized“ samples and have a broad range on how the synthesiz-
ing takes place. One of the more complex examples is the synthetic minority oversampling
technique (SMOTE) [9]. SMOTE synthesizes samples by using the point representations
of samples in the feature space. So for every feature the samples have, there is one di-
mension in the feature spaces and every sample has a coordinate according to the feature
values of that sample. In every step SMOTE then takes two random samples out of the
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class it wants to oversample and creates a new sample that lies on a random position on
the path between the two chosen samples. Which samples to choose or where on the path
to create the new sample can also be decided according to different rules and heuristics.
The duplicating oversampling method which is also used in this study is simpler. It just
takes samples of the specific type or group and multiplies them, resulting in a dataset
that contains duplicates but is more balanced. The variation in duplicating oversampling
methods is only in the way the samples are chosen. In this study they are just randomly
chosen from the whole group which is to be oversampled, but it is also possible to use
different heuristics, for example only choosing specific subgroups of the main group that
is to be oversampled.

3.4 Finetuning

Finetuning also called two-phase approach is a form of transfer learning. The concept of
transfer learning is used for domains with very limited data for this very specific domain
but with plenty of data for a related domain. Transfer learning systems are trained on
the domain with lots of data and the gained knowledge is then “transferred“ to the task
with limited data by retraining (parts of) the system with this smaller data set [52]. This
concept is most often applied to convolutional neural networks. For example breast cancer
detection, a domain with very limited amounts of data, especially with cancer positive
labeled data, can be done by transfering the knowledge of big image classification net-
works like GoogLeNet, AlexNet, etc. to the specific domain of breast cancer detection
[23]. This leads to a state where the training data, which is from the related and the
specific domain, and the test data, which only comes from the specific domain with not
much data, are from a different distribution [38].
Finetuning is a special case of transfer learning where the first bigger data set is obtained
by oversampling the original data set. The network is then at first trained on the over-
sampled data set and afterwards retrained on the original data set. The reasoning is the
same as for every other transfer learning task, that the bigger data set, in this case with
an increased number of samples for less frequent classes, allows the network and especially
the convolutions within the network to learn a better feature extraction. The finetuning
in the second step should allow the network to fit to the original data distribution and
in the special case of finetuning, also should reduce or eliminate the overfitting that is
caused by the oversampling.
The main difference between finetuning an classical transfer learning is the size of the
second data set in relation to the first data set, as well as the number of parameters in the
network. For finetuning the first data set is also of course bigger than the second data set
but the factor by which it is bigger, is smaller than for most transfer learning applications.
This is why the number of epochs which the network is trained on the second data set
as well as the learning rate that is used for the retraining need to be smaller in order to
not eliminate every effect that was achieved in the first training on the oversampled data
set. Additionally only the parameters in the fully connected output layer are changed
during the retraining because the fully connected layer are most prone to overfitting and
the feature extraction from the convolutions should not be changed.
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4 Data, Methods and Evaluation

This chapter gives an overview on the specific configurations and choices that were made
for this study. At first the data set and preprocessing that is applied to the data is
described. Then the network architecture and other unvarying training parameters are
listed. Afterwards the concrete application of the oversampling and finetuning is specified
along with the parameters that are tested for these methods. In the last subsection
statistical evaluation methods are assessed and the metrics chosen for evaluation in this
study are presented.

4.1 Dataset

The data set consists of concentrations of nitrogen oxide (NO), nitrogen dioxide (NO2)
and ozone (O3) as well as the cloud cover, planetary boundary layer height, relative hu-
midity, temperature and the winds u and v component. The air quality measurements
that include the various concentrations of air pollutants are given as daily moving average
above an 8 hour time window and are provided by the German Umweldbundesamt. The
meteorological data comes from the COSMO-REA6 [6] and for planetary boundary layer
height and temperature the maximum daily value is chosen while for the other variables
the average daily value is used. The data is accessible via the TOAR database [43] and a
list of all stations can be found in the appendix A.
After collecting the data from all stations the data is split into training, validation and
test data. The training data is then standardized to approximately mean zero and unit
variance for all variables and divided into batches of 512 samples. The splitting into
training, validation and test data set has to be done before the standardization to not
give the network information about the validation and test data. This data preprocessing
is identical to the preprocessing done by Kleinert et al. in the IntelliO3-ts paper [26].
Kleinert et al. also list a more detailed description of the data as well as the standardiza-
tion process. The only differences lies in the number of days which are forecasted. While
in the IntelliO3-ts paper 4 days were forecasted, this study will focus on only forecasting
1 day. The reason for this is the application of the oversampling which will be explained
later in section 4.3.

4.2 Base Model and training

The network architecture used in this study is identical to the architecture used in the
IntelliO3-ts paper [26]. The only small change is due to the decrease in the forecasted
time steps. It consists of two inception blocks followed by two fully connected layers.
For faster convergence of the learning process a minor output tail is added to the first
inception block. A detailed visualization of the network architecture can be found in the
appendix B.
The model without oversampling or finetuning will be referred to as “reference“ model.
This reference model as well as the model where oversampling is applied will be trained
for 150 epochs with a learning rate of 10−5 and for the backward propagation the adam
optimizer [24] will be used. For the finetuning experiments, learning rate and number of
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epochs are parameters that are subject to testing.
The implementation of the network, the training and the evaluation are done with MLAir
[30], a machine learning framework for air time series data developed by Leufen et al.,
which is mainly based on keras and tensorflow.

4.3 Oversampling and Finetuning

The oversampling is applied to the training data before the training of the network takes
place and it is done as follows. The range of all ozone values from the training data is
divided in b identical spaced intervals called “bins“. For every bin bi the oversampling rate
oi is determined as the number of samples in the bin, divided by the number of samples in
the most frequent bin bmax, so oi = |bi|

|bmax| . Additionally there is a maximum oversampling
rate omax as an upper limit for the oversampling rates. So if any oi would exceed this
maximum it is set to omax instead. Therefore the oversampling rate oi for the bin bi is
defined as:

oi = min

(
| bi |
| bmax |

, omax

)
(9)

After the calculation of the oversampling rates, the samples in each bin are copied until
the oversampling rate of the bin has been achieved. For the oversampling rate oi, the
samples should be copied oi − 1 times. To achieve this, the whole sample set in the bin
is copied boi − 1c times and the remaining oi − boic rate is chosen randomly from all
samples in that bin. This results in a new sample distribution where every bin has the
same frequency (except for the bins where the oversampling rate is capped by omax). This
oversampling method has two parameters which are tested in this study, the number of
bins b and the maximum oversampling rate omax.
Finetuning is an additional step that is done after the oversampling and training on the
oversampled training data. During finetuning the network is trained again but with the
original dataset that was not oversampled. In this second training phase the learning
rate of the network is lower, less epochs take place and not all parameters of the network
are trainable. Instead only the parameters in the output layer are set as trainable which
means only these parameters will be adjusted during backward propagation. The exact
learning rate and number of epochs are parameters that are tested in this study.

4.4 Statistical Evaluation Methods

There are various evaluation metrics across climatology [16], deep learning [20] and re-
gression analysis[7]. These fields have many overlaps, especially on the most commonly
used metrics, but also some metrics that are more exclusively used in one of the research
fields. This chapter first gives an overview on the most commonly used metrics and also
addresses the problem they might bring for evaluating the ability to precisely forecast
high or “extreme“ values. Afterwards the metrics that are used for evaluation in this
study will be presented.
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4.4.1 Common Evaluation Metrics

According to Botchkarev et al. [7] the most frequently used evaluation metrics for re-
gression tasks are the mean absolute error (MAE), the mean absolute percentage error
(MAPE) and the mean squared error (MSE). Let ŷ be the prediction, y the correct label
and n the number of samples:

MAE =
1

n

n∑
i=1

| ŷ − y | (10)

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷ − yy
∣∣∣∣ (11)

MSE =
1

n

n∑
i=1

(ŷ − y)2 (12)

These metrics are all based on summation of the distances between forecast and correct
value and are frequently used in climatology and especially deep learning, where the loss
function which the algorithm learns from is most often one of the above mentioned metrics.
The main problem with this type of metrics, especially for this study, is that the error
of all samples is averaged. The MSE for example weights stronger deviation more than
the MAE but it is still a calculation of the average distance, just with a slightly different
distance metric. But since this study focuses on extreme ozone values which occur rarely,
these types of average error functions are not well suited as evaluation metrics.

4.4.2 Metrics used in this study

The evaluation metrics and scores used in this study are mainly inspired from clima-
tological research and are based on the very detailed overview from Wilks et al. [16].
Additionally the National Oceanic and Atmospheric Administration gives a condensed
overview on forecast verification metrics [37]. The main focus in this study lies on con-
tingency tables and multiple scores which are calculated from these. For graphical illus-
trations conditional quantile plots can be very useful. The main goal for the metrics is to
evaluate whether the model has the ability to distinct between a high or a lower ozone
concentration.

Observations

y1 y2

F
or

ec
as

t ŷ1 a b

ŷ2 c d

Figure 5: 2×2 contingency table, with the class 1 which represents values over a certain
threshold and class 2 that represents values under the threshold. a, b, c and d are the
number of samples that fall under the associated category.
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Contingency tables are a way to display the joint distributions of forecast and observations.
They are class based, which means the forecasts and distributions are divided into two or
more classes. For this study 2× 2 contingency tables will be build by setting a threshold
and dividing observations and forecasts in two groups, group 1 is above the threshold and
and group 2 below. This means that y1 are the observations above the threshold, y2 the
observations below the threshold and the same goes for the forecasts for ŷ1 and ŷ2 (fig.
5). There are many scores that can be calculated based on contingency tables. The scores
in general compress the information of the contingency table to a single value. Obtaining
single values from contingency tables makes it possible to plot them for every threshold,
resulting in a plot of the score in dependence of the threshold.
The gilbert skill score (GSS) is well suited for the overall aim of this study. It uses
the non random correct forecasts above the threshold, which means the correct forecasts
above the threshold a, minus the hits by chance ch, calculated as the frequency of the
event times the number of forecasts for this event. This is divided by the sum of correct
forecasts above the threshold a, false forecasts above the threshold b and false forecasts
below the threshold c minus the hits by chance ch:

GSS =
a− ch

a+ b+ c− ch
(13)

This gives a metric to evaluate the networks ability to reliably forecast whether a certain
threshold is exceeded or not, while also accounting for random guesses and also the false
forecasts. The gilbert skill score additionally has the advantage, that it works well for less
frequent classes since the correct forecasts below the threshold are not taken into account.
Additionally the hit rate (H), the false alarm rate (F ) and the bias (B) are chosen because
these three combined allow a reconstruction of a complete contingency table and therefore
capture all information provided by the table.

H =
a

a+ c
(14)

F =
b

b+ d
(15)

B =
a+ b

a+ c
(16)

Overall the gilbert skill score and hit rate are indicators to whether the aim of the study,
increasing accuracy on extreme values, is achieved. The main difference between the two
is that the hit rate only focuses on the percentage of correctly forecasted samples that
are above the threshold, while the gilbert skill score also accounts for the samples that
are falsely forecasted to be over the threshold. Ideally especially with growing thresholds,
the gilbert skill score and hit rate from the models trained in this study should be higher
than the scores from the reference model. False alarm rate and bias on the other hand can
display the drawbacks the applied methods might have in sometimes falsely predicting
extreme values. Therefore gilbert skill score and hit rate can be categorized as “positive
oriented“ metrics where a higher score is good while false alarm rate and bias are “negative
oriented“ metrics where a lower score is desirable. To prevent dividing by zero and to
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make the scores more smooth every contingency cell is increased by one, therefore avoiding
null entries in the contingency cells.
Conditional quantile plots are a method to graphically illustrate the joint distribution
from observations and forecasts. They consist of two parts. The first is a histogram at the
bottom that displays the forecast distribution. The second part displays the conditional
distribution of the observations with a given forecast. It consists of several lines that
represent different quantiles as well as the 1:1 reference line which represents a perfect
forecast. The reference line is important to detect systematic over- or underestimations.
If the 50% quantile is below the reference line, this implies that the mean observation for
this prediction value is below that value. This signals systematic overestimation since on
average the observation given this predicted value is lower than the given prediction. The
convergence of the different quantiles, especially at the upper end of the forecasted values,
can have two reasons. Either the distribution of the observations given a certain threshold
just has low variance or as it can be observed in the example in figure 6 the number
of forecasts for this concentration is so low, that the borders of the different quantiles
merge and one sample represents multiple quantiles. The histogram that displays the
forecast distribution can overall be seen as a indicator for the statistical significance of
the conditional quantiles. If the histogram shows many forecasts for a single value, the
conditional quantiles for that value are more reliable.
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Figure 6: Example of a conditional quantiles plot with the observed concentrations in
dependence on the forecasted concentrations. On the bottom a histogram of the forecast
distribution is displayed with a logarithmic scale (on the right axis). From bottom to
top right the reference line as well as the different quantiles of observations for a given
forecast value are illustrated.
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5 Results

In this chapter the conducted experiments will be listed. They can be divided into two
parts, experiments with oversampling (sect. 5.1) and experiments with oversampling and
subsequent finetuning (sect. 5.2). In both parts a hyperparameter search is done for the
method specific parameters which means that multiple parameter values are tested and
evaluated against each other. The evaluation and comparison of the different parameter
values will be mainly based on the contingency table score plots. Additionally for the
thresholds of 60 ppb and 80 ppb exact values for the different scores and models will
be used as a case study. To assess overall performance and to showcase the influence
on the joint distribution of forecasts and observations, conditional quantile plots will be
displayed for specific experiments.
The experiments listed in this section do not contain every model and every parameter
value that was tested in the study but only the models with reasonable results and sig-
nificant changes are displayed. Furthermore, some of the oversampling experiments as
well as the finetuning experiments were conducted multiple times with the exact same
parameters to investigate the volatility in the results and test their statistical significance.
The deviations in the contingency scores between models with identical parameters where
always less than 0.5%.

5.1 Oversampling

The two parameters that can be adjusted for the oversampling are the maximum oversam-
pling rate and the number of bins that the range of ozone concentrations is split into (see
sect. 4.3). First, different oversampling rates will be tested while using a fixed number
of bins (sect. 5.1.1) and then vice versa the number of bins will be changed while using
a constant maximum oversampling rate (sect. 5.1.2). In the end an experiment with
different oversampling rates as well as different number of bins will be conducted (sect.
5.1.3). For all experiments the network that was trained without oversampling will be
used for reference (see sect. 4.2).

5.1.1 Different oversampling rates

For this experiment the number of bins will be fixed to 10. The maximum oversampling
rates used are 10, 50, 100 and 500. The different maximum oversampling rates lead to
different success in the flattening of the training sample distribution. Table 1 displays
the number of samples that are in each of the 10 bins as well as the frequency and the
oversampling rate that would be needed to fully balance the training data.

Table 1: Number of samples, frequency and oversampling rate that would be necessary
to completly balance the data for each of the 10 bins that the training data is split into.

Bin 1 2 3 4 5 6 7 8 9 10
Samp. 77946 169155 254073 153046 63795 19966 4561 712 77 16
Freq. 0.1049 0.2276 0.3418 0.2059 0.0858 0.0269 0.0061 0.00096 0.00010 0.00002
Rate 3.2496 1.5020 1.0000 1.6601 3.9826 12.725 55.706 356.84 3299.6 15880
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Figure 7 shows density histograms for all four maximum oversampling rates before and
after the oversampling. The higher the maximum oversampling rate, the more bins reach
the same frequency. For a maximum oversampling rate of 10 only 5 out of 10 bins have
the same frequency (fig. 7a) while for the maximum oversampling rate of 500 (almost) 8
bins contain the same number of samples (fig. 7d). But even for the highest oversampling
rate the frequency of the last bin is rarely visible since the oversampling rate that would
be needed for this bin to contain the same amount of samples would be 15880 (tab. 1).

(a) Max. oversampling rate 10 (b) Max. oversampling rate 50

(c) Max. oversampling rate 100 (d) Max. oversampling rate 500

Figure 7: Density histograms for all four oversampled models with different max. over-
sampling rates. The intervals of the histograms are equal to the intervals that are used
for the bins.

On each of the oversampled data sets that are displayed in figure 7, a model was trained
and figure 8 shows the plots of the different contingency scores of each model. All four
plots have two things in common. First is that the model without oversampling has the
lowest scores for all thresholds, with only one exception at the false alarm rate between
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15 ppb and 30 ppb (fig. 8c). Second is that there is always only one interval of thresholds
where the oversampled models deviate from the model without oversampling. For the
gilbert skill score this interval is between 50 ppb and 85 ppb (fig. 8a), hit rate and bias
differ for thresholds between 30 ppb and 85 ppb (fig. 8b, 8d) and for the false alarm rate
this window is between 15 ppb and 75 ppb (fig. 8c). The models with oversampling rates
of 50 and 500 show the highest scores for almost all thresholds. For the positive oriented
metrics they are closely together while the false alarm rate and bias are noticeably higher
for the model with the maximum oversampling rate of 500.

(a) gilbert skill score (b) hit rate

(c) false alarm rate (d) bias

Figure 8: Threat score, hit rate, false alarm rate and bias in dependence of the ozone
concentration threshold in ppb. The different models were trained with oversampling,
10 bins and a maximum oversampling rate of 10, 50, 100 and 500. A model without
oversampling is used for reference.

This effect can also be seen in tables 2 and 3 where the scores for the different models
are listed at the thresholds of 60 ppb and 80 ppb. They again highlight how close the
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models with maximum oversampling rate of 50 and 500 are. For 60 ppb, all oversampled
models are fairly close together while for 80 ppb, there are bigger discrepancies between
the models. The model with a maximum oversampling rate of 50 has the highest gilbert
skill score for both thresholds and also the highest hit rate at a threshold of 80 ppb. The
model with an oversampling rate of 500 has the highest hit rate for a threshold of 60 ppb
as well as the highest false alarm rate and bias for both thresholds.

Table 2: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate
(F) and bias (B) for the different models with maximum oversampling rate of 10, 50,
100 and 500 and 10 bins and the model without oversampling at a threshold of 60 ppb.
The highest value for each score is marked in bold face. At the bottom the absolute and
relative increase from the model with the highest score to the model without oversampling
are listed.

Threshold: 60 ppb GSS H F B
rate 10 0.3976 0.5476 0.0144 0.8685
rate 50 0.4150 0.6661 0.0239 1.1987
rate 100 0.4078 0.6085 0.0192 1.0361
rate 500 0.3961 0.6874 0.0291 1.3357
no oversampling 0.3482 0.4266 0.0079 0.6031
absolute increase 0.0668 0.2608 0.0212 0.7326
relative increase 0.1917 0.6114 2.6742 1.2147

Table 3: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate
(F) and bias (B) for the different models with maximum oversampling rate of 10, 50,
100 and 500 and 10 bins and the model without oversampling at a threshold of 80 ppb.
The highest value for each score is marked in bold face. At the bottom the absolute and
relative increase from the model with the highest score to the model without oversampling
are listed.

Threshold: 80 ppb GSS H F B
rate 10 0.0131 0.0133 0.00003 0.0218
rate 50 0.0634 0.0674 0.00020 0.12536
rate 100 0.0046 0.0048 0.00004 0.0161
rate 500 0.0478 0.0579 0.00068 0.2526
no oversampling 0.0185 0.0190 0.00006 0.0370
absolute increase 0.0448 0.0484 0.00062 0.2156
relative increase 2.4188 2.5508 10.3333 5.8199

At a threshold of 60 ppb the scores imply that the model with a maximum oversampling
rate of 500 would correctly classify 69% of the samples that are above the threshold
while the model without oversampling only achieves this for 43%. On the other hand
the oversampled model would falsely predict 2.9% of the samples below the threshold
as above the threshold while this only happens for 0.8% of the samples with the model
without oversampling. In absolute terms this means an increase of 0.26 in the hit rate

21



at the cost of increasing the false alarm rate by 0.021 while in relative terms the hit rate
gets increased by 61% while the false alarm rate gets increased by 267%. So the absolute
increase is higher for the hit but the relative increase is higher for the false alarm rate.
This is also true for the 80 ppb threshold where the relative increase is overall higher than
for 60 ppb but the absolute increase is lower.

5.1.2 Different number of bins

For this experiment the maximum oversampling rate is fixed to 50 while the number of
bins are 5, 10, 20 and 50.

(a) gilbert skill score (b) hit rate

(c) false alarm rate (d) bias

Figure 9: Gilbert skill score, hit rate, false alarm rate and bias in dependence of the ozone
concentration threshold in ppb. The different models were trained with oversampling, a
maximum oversampling rate of 50 and 5, 10, 20 or 50 bins. A model without oversampling
is used for reference.

The score plots in figure 9 show similar characteristics to the plots in the previous exper-
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iment. The model without oversampling again has the lowest scores for all thresholds,
except for the false alarm rate between 10 ppb and 30 ppb (fig. 9c). Deviations between
the models are also again only in a certain range of thresholds and these ranges are also
identical to the previous experiment, from 50 ppb to 85 ppb for the gilbert skill score (fig.
9a), from 30 ppb to 85 ppb for hit rate and bias (fig. 9b, 9d) and from 15 ppb to 75 ppb
for the false alarm rate (fig. 9c). The models with 5 or 10 bins have the highest score for
almost all thresholds, both for the positive as well as the negative oriented metrics.

Table 4: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate
(F) and bias (B) for the different models with 5, 10, 20 and 50 bins and a maximum
oversampling rate of 50 and the model without oversampling at a threshold of 60 ppb.
The highest value for each score is marked in bold face. At the bottom the absolute and
relative increase from the model with the highest score to the model without oversampling
are listed.

Threshold: 60 ppb GSS H F B
bins 5 0.4052 0.6620 0.0250 1.2188
bins 10 0.4150 0.6661 0.0239 1.1987
bins 20 0.3903 0.5928 0.0202 1.0419
bins 50 0.4110 0.6173 0.0196 1.0541
no oversampling 0.3482 0.4266 0.0079 0.6031
absolute increase 0.0668 0.2395 0.0171 0.6157
relative increase 0.1917 0.5615 2.1553 1.0209

Table 5: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate
(F) and bias (B) for the different models with 5, 10, 20 and 50 bins and a maximum
oversampling rate of 50 and the model without oversampling at a threshold of 80 ppb.
The highest value for each score is marked in bold face. At the bottom the absolute and
relative increase from the model with the highest score to the model without oversampling
are listed.

Threshold: 80 ppb GSS H F B
bins 5 0.0871 0.1007 0.00051 0.2469
bins 10 0.0634 0.0674 0.00020 0.1254
bins 20 0.0047 0.0048 0.00001 0.0086
bins 50 0.0148 0.0152 0.00007 0.0351
no oversampling 0.0186 0.0190 0.00006 0.0370
absolute increase 0.0686 0.0817 0.00045 0.2099
relative increase 3.7026 4.3012 7.5000 5.6660

Tables 4 and 5 also underline the observations from the score plots. For the 60 ppb
threshold the scores from the oversampled model are very close together while for the 80
ppb threshold, the differences are more clearly. At the 60 ppb threshold the model with
10 bins has the (slightly) highest gilbert skill score and hit rate and the model with 5 bins
has the highest false alarm rate and bias. The latter has the highest scores in all four
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metrics at a threshold of 80 ppb. Just like in the last experiment (tab. 2, 3) the hit rate
has a higher increase in absolute terms while the false alarm rates increase is relatively
higher. For 60 ppb the model with an oversampling rate of 50 and 10 bins can capture
67% of the threshold exceedings while the model without oversampling only correctly
forecasts 43% of them. In return the false alarm rate is also increased from 0.8% to 2.4%.
Figure 10 displays the conditional quantile plots for the experiment without oversampling
(fig. 10a), and the experiment with a maximum oversampling rate of 50 and 5 bins
(fig. 10b). The overall forecast distribution of the model with oversampling shows an
increase in forecasts of higher values, especially in the range from 80 ppb to 85 ppb and
an overall more equal distribution. While the 50% quantile line for the model without
oversampling is very close to the reference line, the 50% quantile line for the model with
oversampling drops below the reference line at 40 ppb and stays below it for all forecasts
above 40 ppb. This signals that the model with oversampling on average overestimates
ozone concentrations when it forecasts above 40 ppb. The difference at the upper end of
the quantile lines, where they converge only for the model without oversampling, can be
explained by the forecast distributions. The model without oversampling only forecasts
the highest values once, while the model with oversampling does it multiple times, which
leads to not converging quantiles as explained in section 4.4.2.
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(a) without oversampling
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(b) oversampling rate 50, 5 bins

Figure 10: Conditional quantile plots for the model without oversampling (on the left)
and the model a maximum oversampling rate of 50 and 5 bins (on the right). At the
bottom the forecast distribution is displayed in a logarithmic scale and from bottom left
to top right the observation distribution and its quantiles given a certain forecast value
are shown.

5.1.3 Different oversampling rates and number of bins

In this final experiment in the oversampling section, four different combinations of max-
imum oversampling rates of 50 and 100, paired with 5 and 10 bins will be compared.
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These combinations were chosen because these parameters showed the highest or one of
the highest scores in the two previous experiments (sect. 5.1.1, 5.1.2).

(a) gilbert skill score (b) hit rate

(c) false alarm rate (d) bias

Figure 11: Gilbert skill score, hit rate, false alarm rate and bias in dependence of the
ozone concentration threshold in ppb. The four models were trained with oversampling,
with the possible combinations of maximum oversampling rate of 50 and 100 and 5 or 10
bins. A model without oversampling is used for reference.

The characteristics of the score plots in figure 11 are again very similar to the previous
experiments both regarding the model without oversampling having the lowest scores and
the threshold ranges in which the scores are different. The gilbert skill score (fig. 11a)
and the hit rate (fig. 11b) are highest for the model with maximum oversampling rate
of 100 and 5 bins, especially for higher thresholds. This model also has the highest false
alarm rate (fig. 11c) for thresholds in the range of 10 ppb to 25 ppb and again from 45
ppb to 80 ppb while between these two ranges it is also slightly lower than the model
without oversampling. Lastly the model with maximum oversampling rate of 100 and 5
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bins also has the highest bias (fig. 11d) in the range of 65 to 90 while prior to this range
the models with maximum oversampling rate of 50 and 5 or 10 bins have the highest bias.

Table 6: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with maximum oversampling rates of 50 and 100 and
5 or 10 bins and the model without oversampling at a threshold of 60 ppb. The highest
value for each score is marked in bold face. At the bottom the absolute and relative
increase from the model with the highest score to the model without oversampling are
listed.

Threshold: 60 ppb GSS H F B
rate 50, bins 5 0.4052 0.6620 0.0250 1.2188
rate 50, bins 10 0.4150 0.6661 0.0239 1.1987
rate 100, bins 5 0.4074 0.6665 0.0251 1.2260
rate 100, bins 10 0.4078 0.6085 0.0192 1.0361
no oversampling 0.3482 0.4266 0.0079 0.6031
absolute increase 0.0668 0.2399 0.0172 0.6229
relative increase 0.1917 0.5624 2.1705 1.0328

Table 7: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with maximum oversampling rates of 50 and 100 and
5 or 10 bins and the model without oversampling at a threshold of 80 ppb. The highest
value for each score is marked in bold face. At the bottom the absolute and relative
increase from the model with the highest score to the model without oversampling are
listed.

Threshold: 80 ppb GSS H F B
rate 50, bins 5 0.0871 0.1007 0.00051 0.2469
rate 50, bins 10 0.0634 0.0674 0.00020 0.1254
rate 100, bins 5 0.1338 0.1520 0.00045 0.2811
rate 100, bins 10 0.0046 0.0048 0.00004 0.0161
no oversampling 0.0185 0.0190 0.00006 0.0370
absolute increase 0.1153 0.1330 0.00045 0.2441
relative increase 6.2218 7.0016 7.5000 6.5891

The tables 6 and 7 display the score at the 60 ppb and 80 ppb threshold. They show that
the model with a maximum oversampling rate of 100 and 5 bins has the highest score for
almost all metrics. Only exceptions are the highest gilbert skill score at 60 ppb which is
obtained by the model with maximum oversampling rate 50 and 10 bins and the highest
false alarm rate at 80 ppb from the model with maximum oversampling rate 50 and 5
bins. The model with oversampling rate 100 and 5 bins achieves an absolute increase in
the hit rate of 0.24 at 60 ppb and 0.13 at 80 ppb while only increasing the false alarm
rate for 0.017 and 0.00045 respectively. Especially the increase at 80 ppb which is 700%
is significantly higher than for any other model. This means that the model with an
oversampling rate of 100 and 5 bins has the ability to correctly forecasted 67% instead of
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only 43% of the samples above 60 ppb and 15.1% instead of 1.9% of the samples above
80 ppb. Just like in the previous two experiments (tab. 2, 3, 4, 5), the scores from the
oversampled models are very close together at the threshold of 60 ppb while having bigger
discrepancies for the threshold of 80 ppb.
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(a) oversampling rate 50, 5 bins
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(b) oversampling rate 50, 10 bins
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(c) oversampling rate 100, 5 bins
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(d) oversampling rate 100, 10 bins

Figure 12: Condtional quantile plots for the models with maximum oversampling rate
of 50 and 5 bins, rate of 50 and 10 bins, rate of 100 and 5 bins and rate of 100 and 10 bins
(bottom right). At the bottom the forecast distribution is displayed in a logarithmic scale
and from bottom left to top right the observation distribution and its quantiles given a
certain forecast value are shown.

Figure 12 displays conditional quantile plots for all four models with oversampling that
were compared in this experiment. Differences between the models can be observed es-
pecially in the upper end of the forecast distribution as well as in the systematic over-
estimation, indicated by the 50% quantile being below the reference line. The model
with a maximum oversampling rate of 50 and 5 bins (fig. 12a) has the most forecasts
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in the range from 80 ppb to 85 ppb while the forecast distribution of the model with
a maximum oversampling rate of 100 and 10 bins (fig. 12d) ends earliest. In terms of
systematic overestimation, the 50% quantile of these two models is below the reference
line for all concentrations above 30 ppb while for the other two models (fig. 12b, 12c) the
50% quantile converges back to the reference line at the end of the forecast distribution.
This indicates that all models on average overestimate forecasts above 30 ppb but for the
models with oversampling rate 50 and 10 bins, and rate 100 and 5 bins, this overestima-
tion vanishes at the upper end of the forecast distribution.
In summary, the oversampling shows an impact on the contingency scores, increasing both
positive and negative oriented metrics (fig. 8, 9, 11). The conditional quantile plots (fig.
10, 12) also show a difference for the oversampled models, especially with an increase in
systematic overestimation and an increase in higher forecasts, leading to a more equal
forecast distribution. Concerning specific oversampled models, the model with a maxi-
mum oversampling rate of 100 and 5 bins shows the overall best scores in the positive
oriented metrics while not having substantially higher scores for the negative oriented
metrics. Especially for the threshold of 80 ppb it shows significant advantages over the
other oversampled models (tab. 7). This is why this model will be used for the finetuning
in the following section.

5.2 Finetuning

In this section the model that was trained with a maximum oversampling rate of 100 and
5 bins will be taken as a base model and finetuned according to different parameters.
Finetuning is a retraining of the oversampled model using the original data set without
oversampling but only the parameters in the main output layer are retrained (see sect.
4.3). In the first experiment different learning rates will be used with a fixed number of
epochs (sect. 5.2.1) and in the second experiment the learning rate will be fixed and the
training is done for different number of epochs (sect. 5.2.2). For the score plots the base
model as well as the model without oversampling will be used for reference.

5.2.1 Different learning rates

In this experiment the base model will be finetuned for 10 epochs with learning rates of
10−6, 10−7 and 10−8 (see eq. 4). Figure 13 shows the contingency score plots for the
different models. In contrast to the experiments in the previous section the order of the
score values below 40 ppb is very different to the order above 40 ppb. Above 40 ppb all
scores show a consistent result with the model without oversampling having the lowest
scores and the base model having the highest score. The higher the learning rate of the
finetuned models, the lower their scores are and therefore the closer they are to the model
without oversampling. The model with a learning rate of 10−8 has such a low learning
rate that it shows almost no change to the base model. For the threshold range between
10 ppb and 40 ppb the results are not that concordant, especially the false alarm rate
(fig. 13c) shows very strong deviations and the model with a learning rate of 10−6 has a
noticable higher false alarm rate than the other models.
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(a) gilbert skill score (b) hit rate

(c) false alarm rate (d) bias

Figure 13: Gilbert skill score, hit rate, false alarm rate and bias in dependence of the
ozone concentration threshold in ppb. The four models were first trained with oversam-
pling and a maximum oversampling rate of 100 and 5 bins. Three of the models where
then finetuned for 10 epochs with learning rates of 10−6, 10−7 and 10−8. A model that
was trained without oversampling is used for reference.

Tables 8 and 9 display the scores of the different models at the thresholds of 60 ppb and
80 ppb. It shows how close the base model and the model with a learning rate of 10−8

are and that one of those two has the highest score for both thresholds and all scores.
The model without oversampling has the lowest scores at 60 ppb while the model that
was finetuned with a learning rate of 10−6 has the lowest scores at 80 ppb. For both
thresholds and all scores, the model with a learning rate of 10−7 is closer to the model
with a learning rate of 10−8 than to the model with a learning rate of 10−6.
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Table 8: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with out oversampling, with maximum oversampling
100 and 5 bins and finetuning of this model with a learning rate of 10−6, 10−7 and 10−8

and 10 epochs at a threshold of 60 ppb. The highest value for each score is marked in
bold face.

Threshold: 60 ppb GSS H F B
lr 10−6 0.3927 0.5371 0.0140 0.8482
lr 10−7 0.4074 0.6491 0.0234 1.1693
lr 10−8 0.4074 0.6647 0.0249 1.2199
rate 100, bins 5 0.4074 0.6665 0.0251 1.2260
no oversampling 0.3482 0.4266 0.0079 0.6031

Table 9: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with out oversampling, with maximum oversampling
100 and 5 bins and finetuning of this model with a learning rate of 10−6, 10−7 and 10−8

and 10 epochs at a threshold of 80 ppb. The highest value for each score is marked in
bold face.

Threshold: 80 ppb GSS H F B
lr 10−6 0.0085 0.0086 0.00001 0.0124
lr 10−7 0.0974 0.1064 0.00030 0.1928
lr 10−8 0.1331 0.1501 0.00042 0.2716
rate 100, bins 5 0.1338 0.1520 0.00045 0.2811
no oversampling 0.0185 0.0190 0.00006 0.0370

Figure 14 shows the conditional quantile plots for the model without oversampling (fig.
14a), the finetuned models with a learning rate of 10−6 (fig. 14b) and 10−7 (fig. 14c)
and the base model (fig. 14d). This order also matches the order of the scores for
most thresholds, with the model without oversampling having the lowest scores for most
thresholds and the base model having the highest scores. This trend can also be observed
in the systematic overestimation between 40 ppb and 75 ppb. While the 50% quantile of
the model without oversampling is very close to the reference line in this range, it goes
below that reference line for the other models and the distance between reference line and
50% quantile increases with decreasing learning rate. The distribution of the forecasts
from the finetuned models (fig. 14b, 14c) is more compact, meaning that the ranges of
forecasted ozone concentrations is shorter, both on the upper and especially the lower end
of the distribution. This shortening of the forecast range is stronger for the model with
the higher learning rate. Another distinctiveness of the finetuned models is, that above 80
ppb, all quantile lines go above the reference lines which signals that an underestimation
is happening at this forecast level.
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(a) without oversampling
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(b) learning rate 10−6
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(c) learning rate 10−7
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(d) base model

Figure 14: Conditional quantile plots for the model without oversampling (top left), the
finetuned models with a learning rate of 10−6 (top right) and 10−7 (bottom left) and the
model with maximum oversampling rate 100 and 5 bins(bottom right) (bottom right). At
the bottom the forecast distribution is displayed in a logarithmic scale and from bottom
left to top right the observation distribution and its quantiles given a certain forecast
value are shown.

5.2.2 Different Number of Epochs

In this experiment, the base model with a maximum oversampling rate of 100 and 5 bins
will again be finetuned, but this time with a fixed learning rate of 10−7 and 5, 10 and 50
epochs. The patterns shown by the contingency score plots in figure 15 are very similar to
the score plots in the previous section (fig. 13). For the range from 40 ppb to 85 ppb, the
base model has the highest scores, the model without oversampling has the lowest and
the higher the number of epochs, the lower the score. For the false alarm rate (fig. 15c)
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between 10 ppb and 40 ppb the result is also very similar to the previous experiment (fig.
13c). The finetuned models have higher scores than the reference and the base model
and the higher the number of epochs, or the higher the learning rate as it was in the last
experiment, the higher the false alarm rate.

(a) gilbert skill score (b) hit rate

(c) false alarm rate (d) bias

Figure 15: Gilbert skill score, hit rate, false alarm rate and bias in dependence of the
ozone concentration threshold in ppb. The four models were first trained with oversam-
pling and a maximum oversampling rate of 100 and 5 bins. Three of the models were then
finetuned with a learning rate 10−7 for 5, 10 and 50 epochs. A model that was trained
without oversampling is used for reference.

Tables 10 and 11 display the scores for the different models at 60 ppb and 80 ppb and
are also in line with the characteristics of the score plots (fig. 15). The model that was
finetuned for 5 epochs shows very little deviation from the base model and one of those
two has the highest score for every threshold and score. The model without oversampling
has the lowest scores for both thresholds.
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Table 10: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with out oversampling, with maximum oversampling
100 and 5 bins and finetuning of this model with 5, 10 or 50 epochs with a learning rate
of 10−7 at a threshold of 60 ppb. The highest value for each score is marked in bold face.

Threshold: 60 ppb GSS H F B
5 epochs 0.4079 0.6574 0.0241 1.1946
10 epochs 0.4074 0.6491 0.0234 1.1693
50 epochs 0.4025 0.5979 0.0189 1.0183
rate 100, bins 5 0.4074 0.6665 0.0251 1.2260
no oversampling 0.3482 0.4266 0.0079 0.6031

Table 11: The different scores: gilbert skill score (GSS), hit rate (H), false alarm rate (F)
and bias (B) for the different models with out oversampling, with maximum oversampling
100 and 5 bins and finetuning of this model with 5, 10 or 50 epochs with a learning rate
of 10−7 at a threshold of 80 ppb. The highest value for each score is marked in bold face.

Threshold: 80 ppb GSS H F B
5 epochs 0.1168 0.1301 0.00037 0.2374
10 epochs 0.0974 0.1064 0.00030 0.1928
50 epochs 0.0333 0.0342 0.00007 0.0551
rate 100, bins 5 0.1338 0.1520 0.00045 0.2811
no oversampling 0.0185 0.0190 0.00006 0.0370
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(a) learning rate 10−6, 10 epochs
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(b) learning rate 10−7, 50 epochs

Figure 16: Conditional quantile plots for the finetuned models with a learning rate of
10−6 and 10 epochs and a learning rate 10−7 and 50 epochs. At the bottom the forecast
distribution is displayed in a logarithmic scale and from bottom left to top right the
observation distribution and its quantiles given a certain forecast value are shown.
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Figure 16 shows the conditional quantile plots for the models with a learning rate of 10−6

and 10 epochs (fig. 16a) and a learning rate 10−7 and 50 epochs (fig. 16b). It underlines
the similarity between the two models that was identifiable in the score plots (fig. 13,
15) and the score tables for the 60 ppb and 80 ppb thresholds (tab. 8, 9, 10, 11). The
conditional quantile plots are very similar, both in the overall forecast distribution and
in the course of the quantile lines. The only difference is on the right end of the plot,
where the quantile lines merge only for the model with a learning rate of 10−6 and 10
epochs (fig. 16a). This is due to the fact that the left model has one forecast for 82 ppb
and 83 ppb while the model on the right has one forecast for 84 ppb and 85 ppb and no
forecasts for 83 ppb. This discontinuance causes the quantile lines to diverge while the
others converge, but is no indicator for significant differences between the models.
Overall the finetuning seems to (partially) revert the changes that were made by the
oversampling. Especially for the contingency score plots (fig. 13, 15) holds: The higher
the learning rate or number of epochs, the closer the models get to the model without
oversampling. One exception is the false alarm rate (fig. 13c, 15c) from 10 ppb to 40 ppb
where the rate is higher for the models with higher learning rate or number of epochs.
The conditional quantile plots (fig. 14, 16) also show that the systematic overestimation
that happens for the base model gets (partially) reverted by the finetuning. But they
also show that the finetuning overall decreases the range of forecasted concentrations,
therefore making the forecast distribution more compact. Additionally adjustments in
the number of epochs and the learning rate have a very similar effect, resulting in the
model with 10 epochs and a learning rate of 10−6 and the model with 50 epochs but a
learning rate of 10−7 being almost identical.

6 Discussion

The results section was split into two parts, investigating the effect of oversampling in the
first part and finetuning in the second part. The discussion will follow this structure and
aims on explaining the metrics and results that where highlighted in the results section
as well as linking these and drawing conclusions from them.
The contingency score plots in the oversampling section (fig. 8, 9, 11) have shown a
significant increase that is caused by oversampling, in the positive as well as in the nega-
tive oriented metrics. The deviation between the models only appears in a certain range,
ending at 85 ppb for all scores. This can be explained with the conditional quantile plots
in figures 10 and 12. The forecast distribution of the oversampled models has an increase
in higher forecasts but the maximum value that is forecasted is not significantly higher.
This leads to none of the models forecasting concentrations above 85 ppb which results
in identical scores for all models after that threshold. The increase in the scores for all
models above 85 ppb is only due to the way that the contingency tables are created as
explained in section 4.4.2. The reason why the oversampling does not increase the maxi-
mum forecast might be the very low frequency of the samples that are above the maximum
forecast of 85 ppb. Table 1 shows that when using 10 bins, the oversampling rates needed
for the last two bins are 3300 and 15880, respectively. This results in the extreme values
still being under represented in the training data (fig. 7). Another explanation might be,
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that the amount of samples for the extreme values is to low for the model to learn from
it, no matter how often the samples are multiplied.
When comparing the impact of the oversampling on the positive oriented metrics to the
negative oriented metrics, the easiest comparison is in hit rate and false alarm rate since
these metrics are a counterpart to each other and a change in them can be directly trans-
lated into the impact that this has on the forecasts of the model. Tables 2-7 that display
the scores at 60 ppb and 80 ppb show that oversampling causes a higher absolute increase
in the hit rate while the false alarm rate has a stronger relative increase. This trade off
between hit rate and false alarm rate can also be observed in the conditional quantile
plots. The increased hit rate (fig. 8b, 9b, 11b) matches to the increase in higher forecasts
(fig 10, 12) while the increase in false alarm rate (fig. 8c, 9c, 11c) can also be seen at the
systematic overestimation which is indicated by the 50% quantile being below the refer-
ence line for all oversampling models (fig. 12). The ranges where the false alarm rate is
increased and the ranges where the oversampled models show systematic overestimation
also match, both from ca. 30 ppb to 85 ppb.
Apart from the trade off between hit rate and false alarm rate, the oversampling models
also show a gilbert higher skill score for the interval from 50 ppb to 85 ppb (fig. 8a, 9a,
11a). In contrast to the hit rate (eq. 14), the gilbert skill score (eq. 10) also accounts for
samples that are falsely classified to be above the threshold. While the hit rate can be
artificially increased by only forecasting very high concentrations, this is not possible for
the gilbert skill score. Therefore, the increase in gilbert skill score leads to the conclusion
that oversampling increases the ability to distinguish between below or above a threshold
for thresholds between 50 ppb and 80 ppb. The increase in the hit rate between 30 and 50
ppb, where the gilbert skill score is not increased, can be purely attributed to the increase
in the false alarm rate that is caused by systematic overestimation.
When comparing the different oversampling models, the tables 2-7 show, that the differ-
ences between some of the models are only marginal. While the models with the lowest or
highest parameters show some stronger deviations, either with positive oriented metrics
being lower or negative oriented metrics being higher, the models with oversampling rates
of 50 or 100 and 5 or 10 bins (tab. 6, 7, fig. 11) have very similar scores. Overall the
model with a maximum oversampling rate of 100 and 5 bins showed (one of) the highest
increases in the positive oriented metrics without having significantly higher negative ori-
ented metrics when compared to the other oversampled models. The model achieves the
highest increase in the hit rate from 43% to 67% at 60 ppb and from 1.9% to 15.2% at
80 ppb while only increasing the false alarm rate from 0.8% to 2.5% at 60 ppb and not
increasing it at 80 ppb. It also has the highest gilbert skill score at 80 ppb and close to
the highest gilbert skill score at 60 ppb. This is why it can be considered the best model
from the oversampling section and why it was used as base model for the finetuning.
For the two finetuning experiments, the learning rate and the number of epochs where
used as parameters, respectively. Both experiments exhibited very consistent results both
in the contingency score plots (fig. 13, 15) and the conditional quantile plots (fig. 14 and
16). This is especially highlighted by figure 16 that displays the conditional quantile plots
for the model with a learning rate of 10−6 and 10 epochs and the model with a learning
rate of 10−7 and 50 epochs. One having the higher learning rate and the other training for
more epochs leads to them having very similar forecast and forecast observation distribu-
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tions. The conclusion that can be drawn from that, is that adjustments in the learning
rate or the number of epochs have a very similar effect.
The gilbert skill score (fig. 13a, 15a), the hit rate (fig. 13b, 15b) and the bias (fig. 13d,
15d) showed very similar patterns. For both experiments and all of the three scores, the
model without oversampling had the lowest score while the base model had the highest
score. The finetuned models where in between and the higher the learning rate or number
of epochs, the closer they were to the model without finetuning. This indicates that the
finetuning reverts some of the changes that are caused by the oversampling. The false
alarm rate (fig. 13c, 15c) for thresholds above 40 ppb showed the same results as the
other three metrics. But for thresholds between 10 ppb and 30 ppb, the finetuned models
had the highest false alarm rate. Additionally an increase in learning rate or number of
epochs led to an increase in the false alarm rate in this threshold range.
This is inline with the results highlighted by the conditional quantile plots in figures 14
and 16. They show that the finetuning decreases the range of values that are forecasted,
leading to an increase in the lowest forecasted concentration and a decrease in the highest
forecasted concentration. This leads to an increase in the false alarm rate (eq. 15) since
more observations with lower concentrations are being overestimated. The conditional
quantile plots in figures 14b and 14c also show that this effect is stronger for a higher
learning rate which also matches the false alarm rate plots.
Overall the finetuning does not seem do add any additional value but only to revert some
of the improvements that were made by the oversampling. It additionally results in a
smaller range of forecasted concentrations which is counterproductive when the aim is to
increase forecast precision for extreme values.
In summary, the results from Buda et al. [8] and Johnson et al. [22] that were found
on extreme event forecasting cannot be fully transferred to extreme ozone concentration
forecasting, as a time series regression task. The finetuning does not generate new fore-
casting abilities but only reverts some of the changes made by the oversampling. The
oversampling partially succeeded but the cost of it is more significant than in the studies
from Buda et al. and Johnson et al.. The results obtained in this study on extreme values
in time series data are in between the results on extreme event forecasting, where the
oversampling does not seem to have significant drawbacks, and the free lunch theorem
from Wolpert et al. [54], that implies that improvement always comes at a cost. In this
case this means that an increase the gilbert skill score and hit rate and number of higher
concentration forecasts comes at the cost of also increasing the false alarm rate and the
bias as well as having a systematic overestimation for certain concentration ranges.

7 Conclusion

The aim of the study was to investigate the effect of oversampling and oversampling
with finetuning on the ability of the neural network to predict high and extreme ozone
concentrations. Especially the improvements for forecasts of extreme values could not
be achieved with either of the methods since they did not increase the maximum fore-
casted concentration significantly. The oversampling can still be seen as success for high
ozone concentrations, increasing the quantity of higher forecasts and increasing gilbert
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skill score and hit rate for thresholds up to 85 ppb. These improvements come at the
cost of also increasing false alarm rate and bias paired with a systematic overestimation
in the ranges where the scores are increased. For applications where a high hit rate of
threshold exceedances is important and sacrifices in the false alarm rate and the bias can
be made in order to achieve it, oversampling can be a valuable method. The model with
an oversampling rate of 100 and 5 bins, which brought the overall best results, achieved
an increase in the hit rate from 43% to 67% at 60 ppb and from 1.8% to 15% at 80 ppb.
Although this is a strong increase, for some applications these hit rates, especially at 80
ppb, might still be to low.
Further investigations on different oversampling techniques for this application might be
useful. Possible changes to the oversampling method used in this study would be not
using equally spaced bins or using a soft cap for the maximum oversampling rate that
scales with the desired oversampling rate. Additionally the usage of completely differ-
ent and more sophisticated oversampling methods like SMOTE would be conceivable. A
problem that synthesizing oversampling methods like SMOTE might face, are physical
constraints which the samples are subject to. Furthermore, the application of oversam-
pling on multiple time steps forecasts would be useful for real world application and might
bring different results.
Apart from that, the transfer of oversampling and finetuning to other time series forecast-
ing tasks, especially with gaussian sample distributions, might be interesting in order to
investigate whether the lack of transferability of the results from imbalanced data prob-
lems is due to the overall task of time series forecasting or rather because of the non
gaussian distribution of ozone concentrations.
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A Data set and List of stations

Table 12: Number of stations, total number of samples and various statistics on the
number of sample per station in the training, validation and test data sets. The number
of samples per station varies as not all stations have data through the full period.

train val test
no. stations 318 219 213
no. samples 743247 147988 245647
mean 2337 675 1153
std 876 84 491
min 169 154 151
5% 747 516 337
10% 1037 623 354
25% 1611 680 616
50% 2658 702 1472
75% 3128 717 1523
90% 3276 717 1548
95% 3323 717 1564
max 3392 717 1578

Table 13: Number of samples (input and output pairs) per station separated by training
(train), validation (val), and test data set. “—“ denotes no samples in a set.

stat. ID train val test
DEBB001 1730 — —
DEBB006 1708 — —
DEBB007 290 717 1542
DEBB009 1390 — —
DEBB021 2687 694 1487
DEBB024 2836 — —
DEBB028 1530 — —
DEBB031 3037 — —
DEBB036 962 — —
DEBB038 1391 — —
DEBB040 1277 — —
DEBB042 3052 717 1410
DEBB043 2592 — —
DEBB048 2667 717 1512
DEBB050 2520 717 —
DEBB051 970 — —
DEBB052 338 — —
DEBB053 2068 695 975
DEBB055 1865 717 1511
DEBB063 1362 717 1512
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DEBB064 1469 717 1542
DEBB065 1385 687 1542
DEBB066 1447 717 1525
DEBB067 1428 717 1526
DEBB075 196 717 1512
DEBB082 — 611 1249
DEBB083 — 226 1506
DEBE010 2750 699 583
DEBE032 2658 678 569
DEBE034 2780 652 571
DEBE051 2771 682 577
DEBE056 2719 662 583
DEBE062 2658 658 620
DEBW004 3225 717 1537
DEBW006 2994 717 1306
DEBW007 2943 691 377
DEBW008 1106 — —
DEBW010 3384 700 1537
DEBW013 2949 702 1492
DEBW019 3281 704 1537
DEBW020 1879 — —
DEBW021 1919 — —
DEBW023 2897 717 1522
DEBW024 3323 702 1537
DEBW025 1859 — —
DEBW026 3348 717 413
DEBW027 3292 687 1521
DEBW028 1830 — —
DEBW029 3331 717 1520
DEBW030 3276 353 —
DEBW031 3264 700 1437
DEBW032 2963 — —
DEBW034 3392 699 377
DEBW035 2605 — —
DEBW036 1492 — —
DEBW037 3345 717 377
DEBW039 3288 702 1520
DEBW041 1928 — —
DEBW042 2930 700 1500
DEBW044 1889 — —
DEBW045 1107 — —
DEBW046 3276 702 1507
DEBW047 1898 — —
DEBW049 1083 — —
DEBW050 1899 — —
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DEBW052 2937 717 1456
DEBW053 1917 — —
DEBW054 1873 — —
DEBW056 3244 717 1537
DEBW057 1042 — —
DEBW059 3275 717 1523
DEBW060 1917 — —
DEBW065 1838 — —
DEBW072 838 — —
DEBW076 3371 717 1253
DEBW081 2973 717 1537
DEBW084 2987 717 1482
DEBW087 3383 702 1520
DEBW094 3004 — —
DEBW102 1344 — —
DEBW103 2512 717 377
DEBW107 1786 703 608
DEBW110 1099 717 377
DEBW111 1075 688 376
DEBW112 618 717 1537
DEBW113 672 — —
DEBY002 3196 717 634
DEBY004 3206 699 1488
DEBY005 3269 703 1557
DEBY013 1369 621 867
DEBY017 1577 — —
DEBY020 3283 717 1497
DEBY031 3203 656 1521
DEBY032 3250 717 597
DEBY034 1877 — —
DEBY039 2837 717 1503
DEBY047 2079 717 641
DEBY049 3190 678 1530
DEBY052 3193 700 1435
DEBY062 1375 686 352
DEBY072 3147 678 1492
DEBY077 1362 717 616
DEBY079 3167 717 558
DEBY081 3208 675 338
DEBY082 1900 — —
DEBY088 3304 702 1503
DEBY089 2959 717 1526
DEBY092 891 — —
DEBY099 1803 685 894
DEBY109 1254 702 1543
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DEBY113 1339 695 1557
DEBY118 905 697 618
DEBY122 — — 1310
DEHB001 2844 702 1069
DEHB002 2473 694 1119
DEHB003 2793 687 —
DEHB004 2756 700 1116
DEHB005 2726 667 1146
DEHE001 2924 717 1563
DEHE008 2861 699 1547
DEHE010 1939 — —
DEHE013 — 717 1547
DEHE017 1832 — —
DEHE018 3341 717 1578
DEHE019 2272 — —
DEHE022 2971 717 1564
DEHE023 3260 700 363
DEHE024 3159 702 1563
DEHE025 1825 — —
DEHE026 3140 685 1578
DEHE027 1809 — —
DEHE028 3242 702 1549
DEHE030 3347 717 1578
DEHE032 3204 703 1563
DEHE033 2091 — —
DEHE034 2211 — —
DEHE039 — — 1168
DEHE042 3238 717 1549
DEHE043 3256 717 1578
DEHE044 2809 717 1578
DEHE045 2521 687 1578
DEHE046 2489 703 1547
DEHE048 1028 — —
DEHE050 1676 — 266
DEHE051 2302 717 616
DEHE052 2976 702 1577
DEHE058 778 717 1578
DEHE060 686 652 1559
DEHH008 2865 717 1485
DEHH021 2926 702 1440
DEHH033 2250 667 1473
DEHH047 2527 684 1484
DEHH049 2232 717 1486
DEHH050 2280 717 1475
DEMV001 1129 — —
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DEMV004 3199 717 1497
DEMV007 3307 717 1472
DEMV012 3118 702 1535
DEMV017 2879 704 1528
DEMV018 2063 706 151
DEMV019 1414 695 1535
DEMV021 596 676 1502
DEMV024 — — 1345
DENI011 2761 507 1564
DENI016 3356 681 1472
DENI019 3184 465 —
DENI020 3253 692 1564
DENI028 3113 660 1024
DENI029 3206 717 1550
DENI031 3138 703 1513
DENI038 2868 717 1505
DENI041 3114 712 1522
DENI042 3196 665 1520
DENI043 3232 653 1499
DENI051 3208 702 1510
DENI052 3127 701 1544
DENI054 3217 703 1536
DENI058 2789 384 1485
DENI059 2656 717 1488
DENI060 2698 717 1523
DENI062 2538 652 1473
DENI063 2353 672 1499
DENI077 — — 1536
DENW004 1351 — —
DENW006 1285 675 1526
DENW008 2683 686 1485
DENW010 1623 — —
DENW013 2062 — —
DENW015 1730 — —
DENW018 1512 — —
DENW028 2621 — —
DENW029 2736 — —
DENW030 2921 575 1424
DENW036 1482 — —
DENW038 2819 624 1533
DENW042 1464 — —
DENW047 1548 — —
DENW050 2777 — —
DENW051 1496 — —
DENW053 2779 653 1481
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DENW059 2699 595 1350
DENW062 1291 — —
DENW063 3010 — —
DENW064 3112 541 1373
DENW065 3125 479 1388
DENW066 3018 — —
DENW067 2672 670 1508
DENW068 3065 369 1307
DENW071 2684 702 1502
DENW078 1310 642 1568
DENW079 2282 688 1550
DENW080 2372 668 1468
DENW081 2425 610 1519
DENW094 1890 590 1534
DENW095 1788 642 1516
DENW096 668 — —
DENW179 758 674 1520
DENW247 — 547 1474
DERP001 2975 717 340
DERP007 2965 717 354
DERP013 3129 700 337
DERP014 3284 688 354
DERP015 3072 699 324
DERP016 3219 717 354
DERP017 3234 717 339
DERP019 3209 700 318
DERP021 3310 702 310
DERP022 3310 693 332
DERP025 3204 679 354
DERP028 3033 662 335
DESH005 946 — —
DESH006 823 — —
DESH008 2989 717 339
DESH016 2965 686 —
DESH021 1423 — —
DESH023 1682 717 354
DESH033 237 717 336
DESL003 3136 717 635
DESL008 1607 — —
DESL011 3031 702 635
DESL012 — — 635
DESL017 3014 717 620
DESL018 1641 699 635
DESL019 1337 687 604
DESN001 3204 670 1356
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DESN004 3310 687 1399
DESN005 1493 — —
DESN011 2810 672 1375
DESN012 3233 717 —
DESN014 2518 — —
DESN017 3270 686 —
DESN019 3137 717 —
DESN024 3324 717 —
DESN028 683 — —
DESN036 1001 — —
DESN045 3100 717 1393
DESN050 3205 702 —
DESN051 3358 659 1375
DESN057 1800 — —
DESN059 2821 703 1335
DESN074 2918 687 1346
DESN076 2632 713 1364
DESN079 — — 1381
DESN085 702 154 —
DESN092 — 518 1379
DEST002 3342 717 1511
DEST005 1144 — —
DEST011 3197 702 1525
DEST014 947 — —
DEST022 1127 — —
DEST025 812 — —
DEST028 2998 — —
DEST030 2575 — —
DEST031 1096 — —
DEST032 791 — —
DEST039 3123 651 1521
DEST044 3194 701 1522
DEST050 3008 698 1496
DEST052 1783 — —
DEST061 1131 — —
DEST063 1558 — —
DEST066 3266 635 1540
DEST069 2867 689 341
DEST070 1798 — —
DEST071 806 — —
DEST072 2914 685 —
DEST077 1586 643 1540
DEST078 3251 701 —
DEST089 2372 702 1452
DEST098 1400 620 1423
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DEST104 — — 1502
DETH005 3369 717 339
DETH009 3312 717 354
DETH013 3223 702 354
DETH016 2273 — —
DETH018 3366 717 354
DETH020 3306 717 354
DETH024 1848 — —
DETH025 2516 366 —
DETH026 2538 717 354
DETH027 2515 697 354
DETH036 3317 717 354
DETH040 3212 717 352
DETH041 3324 702 320
DETH042 3288 686 354
DETH060 2492 717 354
DETH061 2408 717 353
DETH086 169 335 —
DETH095 — 232 354
DETH096 — — 164
DEUB001 2686 717 1412
DEUB003 1563 — —
DEUB004 2786 717 1169
DEUB005 3051 717 1329
DEUB013 1044 — —
DEUB021 511 — —
DEUB022 556 — —
DEUB026 1991 — —
DEUB028 2820 592 1367
DEUB029 3002 717 1303
DEUB030 2953 699 1250
DEUB031 2008 — —
DEUB032 1833 — —
DEUB033 2281 — —
DEUB034 1751 — —
DEUB035 2198 — —
DEUB036 571 — —
DEUB038 1866 — —
DEUB039 1838 — —
DEUB040 1461 — —
DEUB041 755 — —
DEUB042 661 — —
# Stations 318 219 213
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B IntelliO3 architecture

Figure 17: Figure from Kleinert et al. [26]. First part of the network architecture: The
first inception block consisting of 5 parallel branches. With 5×1, 3×1, 1×1 convolutional
filters, max pooling and average pooling. Padding and 1 × 1 filter are added on every
branch to assure same output sizes.
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Figure 18: Figure from Kleinert et al. [26]. Second part of the network architecture:
The second inception block which is identical to the first, the minor output tail on the
right with two fully connected layers and the main output at the bottom with two fully
connected layers.
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